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Abstract 
This document investigates a Monte Carlo simulation approach to a simple ‘Cellular Automata’ 

boolean traffic flow model. The model follows strict rules as laid out by the 1992 paper ‘A Cellular 

Automaton Model For Freeway Traffic’  by Kai Nagel and Michael Schreckenberg, which successfully 

demonstrated a transition from laminar traffic flow to start-stop waves with increasing vehicle 

density. This report will, using the same model, demonstrate similar results to Nagel and 

Schreckenberg and also analyse the variation of certain parameters of the model and their relative 

effects on the flow of traffic along the road.  

Introduction 
It is becoming increasingly important to optimise traffic flow on the roads of the world. Minimising 

the amount of fuel used, a consequence thereof, would have not only economic but also profound 

environmental benefits, reducing the amount of money spent on fuel and reducing the amount of 

greenhouse gas emission into the atmosphere. One method of studying traffic flow in order to do 

this is the use of computer aided simulations. Results obtained from these simulations serve to 

increase our understanding of the ways traffic behaves under certain situations, as well as give 

insight into ways this might be implemented in the real world.  

The Boolean model used in this project provides a valid model for one lane traffic flow on a road, 

with predictive capabilities. Based in nonlinear dynamics, the Monte Carlo simulation will be used to 

converge on several key results that demonstrate its usefulness, as well as demonstrate a phase 

transition from laminar flow to start-stop waves, analogous to behaviour in fluid dynamics. This is 

comparable to what happens in real traffic, as well as the maximisation of a traffic flow metric for a 

critical density point[1]. 
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Figure 1: Typical space time profile for 1 car (p=0) 

(Sidenote: The velocities on the colour bar are 

actually 1 value lower than displayed. This is because 

an actual value of 0 in matlab’s ‘imagesc’ function 

would display as the background colour, resulting in 

confusing visuals) 

 

Method 
The model upon which this paper will be based is a simple cellular model – The lane is represented 

by an array of Length L (the road length), with each cell either being occupied (indicating the 

presence of a vehicle) or not. The system starts with N cars at velocity vi . The spacing will typically 

range between cell 1 and L, rounded to the nearest integer with a linspace function, although upper 

limits of 0.7L and 0.8L have also been used to generate some graphs. 

For the purposes of this report, vi will be taken exclusively to be 1, and will range in integer values 

between 0 and a given ‘speed limit’, vmax. 

The system is then allowed to evolve over an integer number of steps, T. For each step, the 

fundamental rules that dictate the evolution of the road are, in order, as follows: 

1. Acceleration: If the velocity v of a vehicle is lower than a given speed vmax and the distance 

to the next car ahead is larger than v+1, the vehicle will accelerate by a speed of 1  

2. Deceleration (to avoid collision): If a vehicle in position i sees the vehicle in front of it at a 

distance j (& j ≤ v), it decelerates to speed j-1 

3. Deceleration (random): With a given probability, p (to be varied), a given vehicle will 

decelerate by a speed of  1 

4. Car Motion:  Each vehicle will advance by (its respective) v number of cells 

Other conditions will later be introduced, such as adding conditions for particularly slow drivers (or 
speeding drivers) by reducing/increasing vmax for a certain percentage of the cars on the road.  
Periodic boundary conditions are also applied, such that if a vehicle at site I has a speed v that would 

take it past the length of the road, it will instead 
advance to site i-L+v, ‘wrapping’ it back around to the 
start of the road. The main method of data 
representation of the road is in terms of a space time 
profile of the road, with t increasing downwards on the 
vertical axis. Hence a typical profile for a single car 
would look as in figure 1.  
The car accelerates with each timestep, as indicated by 
the changing colours and increasing gaps initially 
between its position at t and t+1, until it reaches vmax  
(6 in this case) at which case it will continue to move at 
v=6, wrapping each time it reaches the end of the road, 
until t=T.  
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Theory 
The first quantity we wish to define in respect to the variables of the model is the density of the cars 

on the road, ρ, given simply by: 

𝜌 =
𝑁

𝐿
 

This variable is a constant for the road, as no cars will leave it due to the wrapping condition, and its 

length does not change. The density will turn out to be a critical variable when attempting to 

optimise the flow of traffic on the road, as we will see.  

The flow will be taken to be the total average speed of all the cars on the road over the time length, 

T, and thus will be sum over all t of the flow at a given time: 

 

𝑄 =
∑ 𝑣𝑗𝑗

𝑇
, 

Experimental data yields a surprisingly specific relationship between flow Q and density ρ, as shown 

in figure 2. There is a distinct change in the gradient dQ/dρ, at around the value of ρ=25%, where the 

flow reaches a maximum. This is the so-called ‘critical density’ at which the traffic is at its most 

optimal. Nagel and Schreckenberg reproduced this relationship in their paper, as shown by figure 3. 

 

 

 

 

 

 

Figure 2: Experimental data of flow Q vs 

Occupancy taken by Japan Highway Public 

Corporation[2] 

Figure 3: Simulation results by Nagel and 

Schreckenberg[1] 
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Figure 4: Laminar flow for ρ=0.15 Figure 5: Start/stop waves forming at ρ=0.2 

Simulation Results & Analysis 
Initially, the slowdown probability p is taken to be 0. Without these random effects, we can still 

observe an interesting relationship between some of the core variables, as demonstrated by Nagel 

and Shreckenberg. If vmax is low enough, the motion will continue unhindered. However, if a 

relationship between the density and vmax is met the start/stop waves begin to form.  This 

relationship comes from vmax attempting to define the spacing between the cars. If this is not 

allowed because there are too many cars to have a spacing of vmax, the cars that accelerate to vmax 

first will eventually reach cars that have not yet accelerated, and the start/stop waves will begin to 

generate, with a new, smaller spacing equal to the speed of the cars in the wave. Figures 4 and5 

demonstrate how the increase in density affects the transition from laminar flow to stop/start 

waves, for vmax = 5, T=100 and L=10 

The transition to a steady solution here is not affected by the length of the road, but the time it 

takes the vehicles to initially accelerate. As long as they are sufficiently spaced, this is not an issue 

and predictable patterns typically emerge within the t=10 range. An increase in vmax will increase the 

width of the stop wave, up to a point. This is also relatively intuitive, though, as the vehicles leaving 

the wave will accelerate more quickly leaving it but also return to the back more quickly. After a 

certain point, however, the vehicles do not have enough space to reach vmax,and the waves will 

reach a maximum width. The wave group travels with a speed of v=-1 in all cases. Interestingly, flow 

is maximised here for the situation in which vmax is such that the start stop waves have just begun to 

form. This is likely due to the emergence of them quickly outweighing the positive contribution of 

simply adding more cars to the road. However, this is not a particularly realistic example of how 

drivers actually perform on the road. While attempts to regulate spacing are made, human error 

amongst other issues consistently result in effectively random decelerations of specific cars. To this 

end, we allow p to take values between 0 and 1 for each of the cases in Figure 4 and 5. The results 

are shown in Figure 6, with the same densities, but over a larger time range and road length to 

better capture the resulting wave. 
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Figure 6: Jams forming for nonzero p at ρ=0.15 and ρ=0.2 respectively.  

Figure 7: ρ=0.2 jams for p=0.1, p=0.3 and p=0.5 

respectively.  

Figure 8: Density/Flow relationship for p=0, 

T=100 and L=100 

 

 

The waves appear much more sporadic and randomised, due to the probabilistic nature of their 

formation. For higher densities (or indeed, vmax, again up to a certain threshold), the number of 

these jams is extended. For higher probabilities, the width of the jams is increased, leading to less 

efficient travel and a lower net flow, as shown in Figure 7: 

 

The formation of these jams is a clear inefficiency issue, and the resulting flow is reduced from the 

ideal value for these starting conditions (average speed of 5) to about 2.5 for the p=0.5 case.  

Next, the flow-density relationship is observed, and similar results to Nagel & Shreckenberg are 

obtained. By running the program over many density values between 0 and 1 with the same vmax of 5 

and (initially) a value of p=0, a graph of this nature is obtained (Figure 8): 

As expected, the correct relationship is observed. Optimal 

traffic flow occurs at a density of around 0.18. After a 

density of around this value is reached, a saturation point 

of cars occurs and the transition to start/stop waves is 

made. The emergence of these waves quickly outweighs 

the contribution of more cars on the road in terms of the 

flow rate, and an effectively linear relationship between an 

increasing density and flow Q is observed. 
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Figure 9: Density/Flow relationship for p=0.2, with T=50, L=100. The left shows 1 sample of data and the 

right demonstrates an average over 100 samples.  

Figure 9: Density/Flow relationship for p=0, 0.2, 0.4, 0.6 & 0.8, with T=50, L=100. All are averaged over 

100 samples.  

A more unpredictable scatter is observed for nonzero values of p. However, these are shown to 

somewhat converge to their corresponding relationships if the average over a large number of 

samples are taken. This is demonstrated below (Figure 9). 

 

 

There are a few things to note here. The first is that the behaviour around the peak is decidedly 

different from that of the p=0 case, although the general shape is still converging to the correct 

result. The beginning of the start/stop waves forming initially behaves differently to the p=0 case 

due to the introduction of the random element generating more waves than would usually 

expected, resulting in a marked drop in flow rate initially. Another thing to note is the flow rate for 

every point has been reduced, as well as the peak moving slightly to the left. Both of these are also 

explained by the overall reduction in flow rate and thicker nature of the stop waves that are 

generated. We would expect to see the last two observations amplified for increasing p, and indeed 

this is demonstrated in Figure 10. 
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Figure 10: Density/Flow relationship for p=0.2, with T=50, L=100. The graphs correspond to (in 

increasing order of peak height)  vmax=4, 8 & 12 

Next, we should investigate what happens if we allow vmax to vary. We again run the program over 

many samples, fixing this time the probability p at 0.2. 

 

 

 

 

 

 

 

 

 

 

 

 

The behaviour here is also interesting. For an increasing vmax, we see an increase in the height of the 

peak and an increasing steepness before the phase transition begins. These are both relatively 

natural consequences of the flow being allowed to be higher before saturation becomes an 

interference. Afterwards, all vmax values converge to the same relationship, which is also to be 

expected as at this point of saturation, none of the vehicles will be able to reach their respective 

maximum speeds, and the relationship will be the same regardless of it. Another thing to note here 

is an increasing steepness of the dropoff behaviour exhibited just after the peak. Due to the 

wrapping nature of the road, cars accelerating to a higher speed will take less time to reach the front 

of the next stop wave, and so the flow rate decreases more and more quickly once the critical 

density has been reached. 

Finally, we will allow there to be a probability of particularly slow/fast drivers, by altering their 

respective vmax by a given probability, pshift.  We will vary this probability between 0 and 0.5, as well 

as the extent to which the respective vmax values are altered to attempt to note a significant change 

in the flow/density relationship. 
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Figure 11: Results for pspeed =0, 0.2, 0.4  & 0.6 respectively for vmax=12 

Figure 12: Results for pspeed =0.2, with vmax alterations of +1, 

+5 & +10 for vmax =5 

 

 

 

 

 

 

 

These results are relatively underwhelming. For different values of pspeed we see effectively no 

change in the trend of the flow/density relation. This could potentially be explained by the fact that 

once critical density is reached, and the phase change introduced, speeding drivers will have to 

move at the speed of the wave regardless – they have no room to speed up as a result of the 

congestion at this point. At densities lower than the critical value, flow rates deviate slightly but 

negligibly. Another thought is that both of the speeding/slower drivers have been implemented 

simultaneously, each one with a probability of 0.5 to occur if pspeed is met. 

We will allow also the vmax to drastically alter in another attempt to illustrate a deviation from the 

typical relationship, and will also only allow speeding drivers to exist, not the slower ones. 

 

 

Again, there is no significant change. The relationships are almost identical. The inference here is 

that the inclusion of speeding drivers has almost no effect on the net flow of the road. This is likely 

simply due to the fact that, even if they can speed up momentarily, they are still bound to the 

movement conditions of the cars directly in front and behind them, and must travel with the speed 

of the resulting wave. 



9 
 

Evaluation 
With a successful model of traffic flow, found by cross-referencing results with both experimental 

data & results obtained by Nagel & Schreckenberg, we have demonstrated various conditions under 

which traffic flow is optimised for given conditions. The braking probability introduced to mimic real 

life deviations from ‘perfect’ driving behaviour were shown to have a significant impact on not only 

the maximum flow rate attainable but also the density at which that maximum can be achieved. The 

natural conclusion here is that drivers should be encouraged to stay as close to this behaviour as 

possible in order to maximise flow and ease congestion. Alternatively, the human element could be 

removed completely by the introduction of driverless cars to the road, which could theoretically 

mimic the behaviour seen in Figures 4 & 5. While increasing the maximum speed allowable did have 

a slight impact on the peak, it is effectively negligible compared to the random stopping probability’s 

contribution, implying a slight need for possible ‘tuning’ weighed against the increased risks that 

would come with raising a speed limit on a given road. The introduction of speeding motorists 

resulted in no noticeable effect on any of the flow/density relationship, and thus is not particularly 

noteworthy in evaluating the model’s usefulness for the optimisation of traffic flow. 

Conclusion 
In conclusion, a valid model has been created that effectively and accurately mimics traffic flow 

within certain restrictive conditions. The results from Nagel and Schreckenberg were extended to 

vary other parameters of the model and evaluate its effects on the traffic flow.  

From this model comes suggestions of ways to optimise traffic on real roads, but limitations of the 

model are obvious. It is only valid, for example, on single lane traffic with no bottlenecks that are not 

the result of driver error. It also does not account for how junctions may affect traffic flow. However, 

quantitative generalisations to the real world are possible in the cases where it is valid, and the main 

result of attempting to keep the density of cars close to a critical value to maximise traffic flow is not 

a trivial one.  
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